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Letter to the Editors 

Solution of Troesch’s, and Other, Two Point Boundary Value 
Problems by Shooting Techniques 

In the paper by Roberts and Shipman [l] much work seems to have been 
undertaken in solving a simple problem. If we define an order of difficulty in 
solving two point boundary value problems as 

(a) one unknown such that the initial estimate allows integration to the end 
of the shooting range, 

(b) more than one unknown such that the initial estimate allows integration 
to the end of the shooting range, 

(c) such a poor initial estimate that integration to the end of the shooting 
range is not possible, 

then Troesch’s problem is in the easiest category (a). 

In solving Troesch’s problem by shooting, the cause of the difficulty is not in 
the fact per se that a pole can exist within the integration range but that the 
iteration technique must reject integrations which are divergent in t < 1. For 
example a Newton iteration with step 6 can be rejected if the solution to the 
initial value problem is divergent, and a step @ can be attempted instead. 

In this letter such a technique is used to solve Troesch’s problem and produces 
satisfactory results in a straightforward manner. Solutions to more difficult prob- 
lems in categories (b) and (c) are also discussed. 

(a) Consider Troesch’s problem as an example. The problem is to solve 

91 = Y2 

j, = n sinh ny, 

Jm = 0 Y,(l) = 1 

To do this we estimate ~~(0) and integrate to t = 1, where we find a calculated 
n(l). We then improve y,(O) so that y1 -+ 1. Two items are important in carrying 
out this process. The first is to have an initial estimate of y%(O) such that integra- 
tion can be made to t = 1; the most obvious choice is zero. Secondly, to ensure 
convergence we require 1 ~:~‘(l) - 1 1 to grow smaller as the iteration number m 
increases. Thus, in applying Newton’s method we halve, if necessary, the indicated 
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change in yz(0), 6 say, until j yim+l’ (1) - 1 1 -=z j y:‘@(l) - 1 [. During this process 
the change 6 may give divergence of the initial value problem due to the pole in 
Troesch’s problem. This divergence could for instance be determined by testing 
1 y&)1, but this was found impractical as noted later. Once divergence has been 
detected we reject the change 8 and instead use $6 and repeat the process as many 
times as necessary. 

An approximation to the gradient needed in Newton’s method is found by 
making a small change to yim)(0), say dy (taken as 0.01.8~“), and integrating to 
t = 1. The corresponding change in (yim’(l) - l), say dF, then gives 

Newton’s method with modifications as noted above is then applied, and iterations 
continued until ) yim)(l) - 1 1 < 1O-s. 

The integration routine used in solving the initial value problem is Gear’s [2] 
nonstiff integration method with accuracy 1O-s. The method has automatic step 
adjustment and, thus, takes care of the large gradients near c = 1 by taking smaller 
steps in the region of difficulty. This feature of taking smaller steps when necessary 
led to a problem in trying to decide when the initial value problem was divergent. 
In the first computer run the criterion of divergence was set as 1 J#)\ > 100. But 
with a particular choice of ~~(0) which would have caused divergence it was found 
that a step length of less than lo-l4 was required to achieve sufficient accuracy in 
y&) (which was O(lO*)) at t -N 0.95 thus preventing integration to a point at which 
1 rl(t)l > 100 (y,(O.95) was approximately 3). Because of this the criteria for 
divergence were set as 1 ur(t)l > 2 and also 1 uz(t)l > 10”. The second computer 
run then produced solutions. 

The solutions are almost identical to those of Roberts and Shipman except at 
n = 5 where the results of Roberts and Shipman have not converged to sufficient 
accuracy. The only discrepancy between the results with n = 6 or n = 10 was for 
n = 10, where this writer’s results gave ~~(1) = 148.4 compared to 252.7 in [l]. 
The analytic solution [l, Eq. (8)], gives y,(l) = dy/dt(l) s (2 cash 10 - 2)li2 = 
148.4. 

(b) Provided an initial estimate, that allows integration to the end of the 
shooting range, is available, application to larger systems follows in a manner 
similar to that above. However with larger systems a more sophisticated tech- 
nique for iteration may be desirable. This writer usually uses Powell’s technique [3] 
for minimizing a sum of squares. This technique applied to systems is illustrated 
in Refs. [4] and [S]. In these papers examples are given in which shooting methods 
are used to solve the two point boundary value problems resulting from the method 
of lines solutions to elliptic partial differential equations. It was not necessary to 
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incorporate a divergence criterion in these examples, but it could have been 
included in the manner described later under (c). In order to integrate to the far 
end of the shooting range with the initial estimate a perturbation technique was 
used. The perturbations which were used changed a physical parameter such as 
Mach number from a small value at which a solution was easily obtained to larger 
values. For each calculation at a certain Mach number a reasonable estimate of the 
unknowns was available by extrapolation. 

The use of such parameter perturbation is recommended since good initial 
estimates are clearly desirable in nonlinear problems. 

The method of lines solutions mentioned above are a good example of the 
inherent instability which may be present when solving two point boundary 
value problems. This instability becomes more dominant as more lines are taken 
and multipoint methods [8] may eventually be necessary. However there are 
problems which are sensitive to initial estimates but which can be solved by an 
adaption of the continuation process. Such a technique for solution is described 
in (c) below. It will be seen that the method is similar to continuation but is 
automatic. We may perhaps refer to the method as “automatic continuation.” 

(c) Suppose that we cannot, with the initial estimate, integrate to the end of 
the shooting range. Let the unknowns at one end of the range by y1 , yz *a. yn., 
and let the boundary conditions at the other end (t = tp say) be fi = fi = +.. = 
fm = 0. Add to the unknowns (ui) a new variable tF , say, which represents the 
end of the shooting range on the current iteration. Add to the criteria fi = 0 
(applied at t = tF now) the extra condition tF - t, = 0. Thus, we have m + 1 
equations to be satisfied by m + 1 unknowns and the problem is complete. tF is 
chosen initially as a sufficiently small fraction of the total shooting range and the 
modified Newton method or Powell’s method proceeds automatically. 

To illustrate this technique the solutions to two problems are outlined below. 
The first is Troesch’s problem with a poor initial estimate and the second is the 
problem due to Holt [6] which has been solved previously by continuation [7]. 

(i) Consider Troesch’s problem with initial estimate ~~(0) = 2(8e-“) (if 
~~(0) > 8e-” then the pole lies within the integration range) and tF = 0.1. Let the 
unknowns ~~(0) and tF be named x1 and x2, respectively, and suppose we apply 
Newton’s method. In applying Newton’s method changes Si are given by 

i!J 83 = -h (i = 1, 2), 

and we approximate 

ax, 
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where dxj is taken as lo-‘5~~ or 1O-s if xj = 0. In the above equationf, = vl(tp) - 1 
and fa = tF - 1. The new values xi are then x,(old) + arSj , where (Y = 1 gives the 
full Newton step. 01 must be halved until the functionf,2 + fi2 decreases. Provided 
the current point is not a minimum the function is almost guaranteed to decrease 
since Newton’s ‘direction’ is most likely downhill. However, it may not be down- 
hill for some cases since we approximate the derivatives af;,lax, by differences 
(Powell’s method [3] is preferable). In Troesch’s problem it was always downhill. 

Note that in Newton’s method the full step 01 = 1 results in tF being equal to 
tf so that integration to the end of the shooting range is achieved. Once the first 
full step has been taken tF will always remain equal to tf . Note also that tF is 
less than or equal to tf for all iterations. 

Newton’s method modified as above and applied to Troesch’s problem gave 
iterations as shown in Table I. With n = 5, 6, and 10 the number of iterations 

TABLE I 

Newton lterations on Troesch’s Problem 

n Iteration Y&Q tF YhF) 

5 0 0.1078 0.100 0.011 

2 0.3312 0.409 0.259 

4 0.1758 0.668 0.575 

6 0.0651 0.917 0.871 

8 0.0461 l.ooo 1.022 

10 0.0457 1.000 1.000 

10 0 0.726, -3@ 0.100 0.857, -4 

10 0.908, -1 0.442 0.706 

20 0.396, --I 0.523 0.656 

30 0.105, -1 0.653 0.594 

40 0.245, -2 0.799 0.608 

50 0.358, -3 l.ooo 1.106 

53 0.356, -3 1.000 1.ooo 

a 0.726, -3 is equivalent to 0.726 x 10-3. 

required for convergence were 10, 11, and 53, respectively. It can be seen that 
when n = 10 convergence is slow (although in terms of computer time the method 
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is still eEcient), and it may be desirable to use a more efficient technique as 
described in example (ii) below. 

(ii) The problem proposed by Holt [6] is a difficult two point boundary 
value problem since a slight deviation from the correct values at the beginning of 
the shooting range can cause divergence of the solution to the initial value problem. 
The equations to be solved are 

~5-(2+) YlY5 - cn - l)Y2Y4 + @4 - l), 

subject to 

Y,(O) = 0 Y2@) = 0 Y4@) = 0 

and 

Y&f) = 0 Yl@f) = 1, 

where 

n = -0.1, s = 0.2, tf = 11.3. 

Powell’s method [3] is used to provide the iteration scheme for solving this two 
point boundary value problem. This method proceeds by minimizing 

F = yz2(tp) + ( y4(tJ - 1)” + (tF - 1 1.3)2 

with respect to y3(0), y6(0), and tp . A divergence criterion has to be incorporated 
in the program so that an iteration in Powell’s method will avoid a search in that 
region. A reasonable divergence criterion for this problem is 1 y2 1 > 10. This is 
included in the program by setting F = 1070 if \ y2 1 becomes greater than 10 during 
the integration. 

The initial estimates were chosen as ~~(0) = -1, ~~(0) = 0.6, and tF = 3.5. The 
solution was found in 413 integrations requiring 21 sets on an IBM 360/85. The 
integration was carried out using Gears nonstiff DIFSUB package [2] with accuracy 
10e4. During the iteration procedure the divergence criterion mentioned above 
was encountered many times as would be expected in this sensitive problem. 
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In conclusion the combination of methods mentioned by Roberts and Shipman 
may be unnecessary in solving many two point boundary value problems and 
certainly it seems unnecessary for Troesch’s problem. 
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